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Dual formulations of the threa-dimensional magnetostiatic and eddy
current problems in lerms of two-component vector polentials are
described. Cancellation errors and interlace problems are avoided by
means of a numerical procedure based on the adoption of edge
elements. The numerical approaches are characterised by a unified
treatment of magnetostatic and eddy curent problems. Each of the two
formulations enforces one of the two canonical field equations exactly.
In this way, taking the solution (E, B} which results from the electric
formuiation and the solution (H, J) coming out from the magnetic one,
the numerical error is concentrated on the constitutive equations. This
allows far an estimation of the global error and provides a useful indica-
tion for the mesh refinements. The possibility of determining upper and
iower bounds for power/energy related parameters, welt known in the
magnetostatic case, is also discussed for the eddy current problem.
¢ 1993 Academic Press, Inc.

INTRODUCTION

Complementary solutions provide a uselul theoretical
basis for the development of several computational methods
in engincering. These formulations give the possibility to
determine upper and lower bounds or power/energy related
parameters and to estimate the errors of the approximate
solutions,

In the context of computational magnetostatics, com-
plementary soiutions can be Tound by enforcing the canoni-
cal equations V.- B=0 and VxH=J_ and minimising a
functional A(B, H} which is refated to the error on the con-
stitutive equation B = B{H), and is zero if evaluated at the
correct solution B=B,, H=H, [1]. The error lunctional
can be split into the sum of two different functionais Z(B)
and &(H), thus providing two dilferent formulations in B
and H. and giving the possibility to define upper and lower
bounds for the quantity @(H,) = —Z(B,), which is related
te the magnetic energy of the system.
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Dual formulations have been discussed lor transient and
steady state eddy current problems {2 570 However, in
these cases, well deflined bounds for power or cnergy
functionals have not been clearly established [27].

In any casc, the use of formulations that exactly verify the
canonical field equations provides a powerful tool for the
error estimation. In fact, in this case, the error is concen-
trated in the constitutive equations and can direcily be
measured. This provides a useful indication for the mesh
refinement, to be especially performed where the pairs
(B, H) or (J, E} are [ar lrom satisfying the constitutive
equations.

Enforcing the canonical equations in three dimensional
geometry can readily be achieved by choosing numericul
formulations based on the use ol two-component vector
potentials and the adoption of edge elements [6-8].

In this paper we will describe the three-dimensional
magnetostatic and eddy current problems in terms of two-
component vector potentials using edge clements. On the
basis of numerical results and theoretical considerations, we
discuss the possibility of defining upper and lower bounds
for power/energy related functionals for the eddy current
preblem too.

BASIC EQUATIONS

The Magnetostatic Problein

We refer to the magnetostatic problem in a bounded
region V described by the field equations

VxH=J, inV (1)

V.-B=0 inV, (2)
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the consitutive equation,

B=B(H) inV, (3)
and suitable boundary conditions like B-n=honédV, =V
and Hxn=hondV,cdav.

Here B is the magnetic induction, H is the field intensity,
J, is an externally imposed current density distribution, and
b and h are prescribed valugs on the boundary. The
constitutive operator (3) is supposed to be continuous,
symmetric and monotone, so that Eqg. (3) can also be
replaced by H=H(B).

The Eddv Current Problem

We assume the mathematical model defined by the field
equations:

VxH=1J n (4)
oB
VxE= 3 in ¥, (3)
the linear material properties
B=yH inV (6)
J=¢E+J, inV, (7)

initial conditions verifying V- B =0, and suitable boundary
conditions like Exn=e on dV,<dV or Hxn=h on
¢V, = dV. Here E is the electric field, ¢ is the time, u is the
magnetic permeability, g is the electric conductivity (non-
zero only in the conducting region V), and ¢ or h are
specified values on the boundary.

These equations determine the magnetic field distribution
in V, along with current density and electric field in V..
Note that in this model, in which the displacement current
is neglected, the electric field is not uniquely determined in
the external region ¥ — V.. A way to have the uniqueness of
E in the external region is to specify its divergence {related
to the charge distribution)in ¥V — ¥ _.

TWO-COMPONENT YECTOR POTENTIALS AND
EDGE ELEMENTS

All the electromagnetic quantities (B, H, E and J) can be
discontinuous at magnetic or electric interfaces. Therefore,
in these cases, they can hardly be expanded in terms of
continuous functions. There are two possible ways of over-
coming this problem without introducing double-valued
functions at the discontinuity interfaces.

The first approach falls within the framework of the finite
element methods and is based on the use of a particular set
of vector shape functions, for which the continuity of the

237

tangential components is preserved, allowing for the
discontinuity of the normal component between adjacent
elements. Such features can be obtained by using the edge
elements, intreduced in [9-107 and generalised in [ 11-14],
whose degrees of freedom are associated with the tangential
components (or the line integrals) of the vector field along
the edges. A shape function in a hexahedral edge element is
illustrated with its curl in Fig. 1. Field formulations using
edge elements have been proposed and applied in terms of
Eor H [15, 16].

The second approach is based on the introduction of vec-
tor and scalar potentials in conjunction with the Coulomb
or Lorentz gauges [ 17-19], expressing the field intensity as
H =T —VQ (T is the electric vector potential ) or the electric
field as F.= —0A/3r—Vag/ct (A is the magnetic vector
potential). In this way, at the magnetic interfaces, the
possible jump of the normal component of H is absorbed
by a discontinuity of dQ/dn, and both 2 and the three
components of T can be kept continuous. The same happens
for the electric field at the electric interfaces. The price to be
paid using this approach is the introduction of an additional
scalar unknown (the scalar potential), which unavoidably
gives rise to another equation.

:
S

FIG. 1.
element.

Shape function N, (a) and its curl VxN, (b) in the master



238

The total number of scalar unknowns is brought back to
three by adopting the gauge conditions:

T-w=0 (8)

A-w=0 (9)
with w selected as an arbitrary vector field without closed
field lines. This approach was first used in conjunction with
isoparametric elements, so postulating the continuity of the
two nonzero components of the vector potentials [20-221].
However, the discontinuity interfaces, including the bound-
ary of the conducting regions, were not taken into account
adequately. In addition, with reference to the T, £2 method,
it was difficult to confine the electric vector potential inside
the conducting regions, and large numerical errors arose in
the magnetic regions (where H is small when compared to
T and V@ separately).

All these problems were overcome by using edge-elements
based shape functions N, to approximate the vector poten-
tials, standard isoparametric shape functions @, for the
scalar potentials, and a numerical way of imposing gauge
conditions {8)-(9) [ 7, 8]. With reference to the graph made
up of nodes and edges of the edge-element mesh, the discrete
analogue of conditions (8)-(9) was obtained by identifying
the direction of w along an arbitrary tree of the graph, so
connecting all the nodes without forming closed loops. The
degrees of freedom corresponding to the edges of the tree
were climinated, and the remaining degrees of freedom were
thus related to the fluxes of J=VxT or B=V x A linked
with the set of independent loops closed by adding each of
the residual edges (i.c., each edge of the co-tree) to the tree
[7, 8]. This technique can readily be interpreted in analogy
with basic circuit theory and is also the discrete analogue of
the gauge T - w = 0, where the field lines of w are given by the
edges of the tree. This method was applied to both integral
and differential formulations of electromagnetic problems.

The integral formulation of the three-dimensional eddy
current problem in nenmagnetic media, presented in [7]
and based on the two-component electric vector potential,
is extremely powerful to analyse the eddy currents induced
in both massive conductors and thin shells. In massive
structures, the scalar degrees of freedom are only two,
because the calculation of the scalar potential is not strictly
required. On the other hand, the method naturally reduces
to the stream function approach when applied to thin
shells [23].

Inside the conducting regions, the differential formula-
tions in terms of two-component electric and magnetic
vector potentials T and A are practically equivalent to the
edge-element-based eddy current approaches in terms
of H and E, respectively. The diiference is in the unified
treatment of conducting and nonconducting regions and of
magnetostatic and eddy current problems.

ALBANESE AND RUBINACCI

DUAL FORMULATIONS OF THE
MAGNETOSTATIC PROBLEM

To assume that the error is concentrated in the con-
stitutive Eq. (3), it is indispensable to guarantee that the
canonical Eqgs. {1)-(2) are satisfied. This can be ensured
by assuming B=VxA and H=T-VQ, with the two-
component vector potentials approximated as described in
the previous section.

In this way, Eq. (2) is automatically implied. As far as
Eq. (1) is concerned, it is satisfied, provided that T is
selected such as to verify

VxT=J, (10}
This can be achieved by direct integration along the direc-
tion w, or by approximating T as Z¢, N, and applying the
weak formulation

JVxNk-VdeV=f VxN,-J, dV YN, (11
|’ V

which is equivalent to minimising the error functional

cb(T):%jV (VxT—J,)dV. (12)

Thus, the problem of determining B and H is reduced to
finding the best estimates of A and Q.

Here we briefly recall the main points of the error based
approach to complementary formulations of magnetostatic
field solutions, presented in [ 1] and applied with the two-
component vector potential in [8]. As shown in [1], the
starting point is the definition of the local error density (for
soft magnetic materials)

H H
A(B,H)=L B(H'). dH’ +L H(B')-dB' —B.H>0
(13)

which is zero only if the field estimates B and H satisfy the
constitutive relationship (3). Note that, for linear media,
ic., if the constitutive equation is given by Eq. (6), the
expression of the local error density becomes

A(B,H)=(B—uH)*/2u = B2u+ uH*2— B . H>0.
(14)

This allows for the definition of a global error functional

A(A, Q)= IV MY XA, T-VQ)dv

=5,(A)+0,(2)+ (A, Q)=0,  (15)
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where

(16)

0

A= {fm H(B)-dB} av

T — Vi
949):[}/“0 B(H)-dH} dv (17)

(A, Q)= fj VxA-(T~VQ)dv. (18)

If A and €2 are selected such as to verify the essential bound-
ary conditions Vx A-n=bon dV,and (T-VQ)xn=hon
av, [1, 8, 247, then (A, £2) can be written as

F{A,Q):—LA-J,dV—LVA-hdS-%—J- Qbds (19)
. 4 [t i

vy

and the error functional can be split into two separate
contributions

A(A, Q)= Z(A) + 6(Q) >0 (20)
with
Vx A
E(A):J {f H(B)-dBmJ,-A}dV—J A-hdS
v ¢ avy
(21}
T — V2
Q) = j { f B(H)-dH}dV— Qb ds. (22)
v 0 avy
Minimisation of Z{A} yields
ijNk-p-lvadV
¥
=[ Nydoav+[ Nohds WN,,  (23)
V aVy

whereas minimisation of @{Q) provides
jyvqpk (T -VQ) dV:j eubdS Ve (24)
)

A visualisation of the local error density distribution can
be obtained by reporting the cloud of pairs (B=V x A,
H=T-V2) in a B— H plane in comparison with the
B — H curve representing the constitutive equation. We can
calcuiate both local error A and global error A, because both
B and H are available on the same mesh. Of course, the locai
error distributions offer a clear indication for a mesh
refinement, because 4 =0 is a necessary condition to have
both B=B, and H=H,.
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In addition, there is the possibility of having energy
bounds. If we call A, and £2, the exact solutions for A and
2, respectively, then we have well-defined upper and lower
bounds for the energy related quantity @(£2,)= —Z(A,),
according to the inequalities

O(Q)20(2)= —Z(Ag) = —Z(A) Y A (25)

These bounds can be used to give a useful estimate of the
relative error &, in terms of energy functionai: ¢, < [@(£2) +
Z(A)/min[{Z(A)}, 1@(Q){ 1.

DUAL FORMULATIONS OF THE
EDDY CURRENT PROBLEM

To assume that the error is concentrated in the con-
stitutive Egs. (6)-(7), it is necessary to enforce the canonical
Egs. (4)-(5) exactly. This can be done by assuming
E= —0A/dt -V dd/ot

{and therefore B=V x A) (26}

H=T-VQ+T, (and therefore J=Vx T+ J,),

(27)

where scalar and two-component vector potentials are
expanded as described before, and J, is approximated by
Vx T, using, for instance, Eq. (11},

In this case, two local errors can be defined, with
reference to the two constitutive equations {(6)-(7). A direct
approach based on the local and time varying constitution
errors was proposed in [2], where it is shown how it is
impossible to split the error functional into the sum of two
contributions depending on E and H separately.

However, the splitting can be achieved by making use of
the Laplace transforms. Assuming ¥V =V, and zero initial
conditions for the sake of simplicity, we can define

(B—uH)’ B A’

(BB, py= BN B _B.H
B, p)= = =T (28)
J__ "__“ 2
ﬂ(,(j,E,p]=(J sE—J,)
20p
3.3 oR* B33,
_O-1p eB B o
26p 2p

where p is the complex variable and X denotes the Laplace
transform of X{1).

Both complex quantities 4,, and 4, are zero if and only if
the field estimates verify the constitutive properties, and
they assume real and positive values if p is real and positive.
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From now on we shall assume p as a real positive quantity.
In this case we can also define the global error functional

AA+VH, T-V3, p)
=| (A(VXAT-VE+T, p)
’d
4 (VxT+d,—pA—pVe p)ldv

FA+V4 T-Va, p)=0

¥ real and positive p, (30)

where
Z(A+V4, p)
f {(Vxﬁ)z ap(A +V§)?
= +
! 2# 2

—(;i+v¢?)-j_,}d1/
(31)

0T -Va, p)
3 )2 2
_ (T-VQ+T,)? (VxT) }dV (32)
v 2 20p
A +Vg, T-Va, p)
=—| V- (A+Vp)x(T-V2+T,)ar. (33)

If the potentials are selected such as to verify the essential
boundary conditions (A +Vg)xn= —fedt on oV, and
(T-V2+T,)yxn=hon dF,, then I" can be written as

and the error functional can be split into two separate
contributions

AA+V4, T-Va, p)
=Z(A+Vé, p)+ T VO, p)=0,

¥ real and positive p (35
with
E(A+V, p)=Z,(A+V4, p)
[ A+ has (36)

a¥y

ALBANESE AND RUBINACCI

O(T Ve, p)=06,T -4, p)

_j” T

Vo+T1,)-é
P
The stationary point of Z (as well as its minimisation for
real and positive values of p) is given by

Cds. (37

Lj [VxN, - u"'VxA+N,.op(A+Vd)} aV

Vf NAJdV+f N,-hds, WN,

Ay

(38)
ka-ap(;i +V@) av

= Vo d,av+| Vo,hds, ve. (39)
(4

a¥y

Similarly, the stationary point {(minimum for p > 0) of &
is given by

j (VxNg o WxT+N, . up(T-VQ+1T,)} dV
.
=J' N,-&dS, YN, (40)
8V
j Vo, pup(T-VO+T)av
V
=—j Vo, -&dS, Vg, (41)
av,

Equations (38)-(39) and (40)-(41) correspond to the
Galerkin formulations

j {VxNk-,u“VxA+Nk-ag;(A+V¢S)}dV
v

=j N,-J,dV+| WN,-hds, vN, (42)
¥ dVy
d
| Voro-(a+vg)av
v ot
=[ Voo Jav+| Ve, wdas, vo. (43)
v avy

and
j {VxNk°a_1VxT+Nk‘% [JLI(T—VQ‘FTS)]} arv
14

=—| N.-edS, WN,

av,

(44)
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[ =99, 2 (uT—va+T)1av
v ot

=— Vo, edS, Ve,

o4

(45)

in the time domain.

Like in the magnetostatic case, a visualisation of the local
error density distribution can be obtained by reporting
the cloud of pairs (B=VxA, H=T-VQ2+T,) and
(J=VxT+J,E= —0A/0t—V d¢/31) in comparison with
the curves representing the constitutive equations. Both
local and global errors can also be calculated, because both
(E, Byand {J, H}are available in the same mesh. Also in the
eddy current case, the local error distributions offer a clear
indication for mesh refinement,

In addition, there is the possibility of having bounds for
functionals (36)-(37), according to the inequalities (holding
for p real and positive)

L. /B
EA+V p)= = (ﬁ; p)= -6(A,-T,, p)

> —0(T-V2, p) VA4, T.0,p. (46)

The simplifying assumptions made at the beginning of
this section can readily be removed.

If ¥, # Vit is sufficient to enforce V x T = 0 exactly in the
region V' — V., where ¢ =0 {a possible choice 1s T=0 if
V — V. is simply connected). In this way, 4, is automatically
zero in ' — V, and hence the global functional (30) becomes

AA+V, T -V, p)

=j lm(VXA,T—VQ+TJ’ p)dV

4

+{ VXT3, pA—pVh. pyav.  (47)
Ve

where it is clear that the scalar potential ¢ plays a role only
instde V.

The treatment of nonzero initial conditions is described in
the Appendix, where all the key features of the approach are

highlighted with the help of a circuit analogue.

EXAMPLES

Both formulations have been applied to the calculation of
the eiectromagnetic field given by a uniform source current
J.in a cube of 1 m?.

In Fig. 2 we show the B — H plot relative to the numerical
solution of the nonlinear magnetostatic problem in which
the current density J,=0.1 MA/m? is parallel to a side of
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IB1(T)

L fkasm)

FIG. 2. B—H plots (pairs at the Gauss points) relative to the
numerical solutions of a nonlinear magnetostatic problem in a cube in
comparison with the magnetic characteristic: (a) discretization of } of
the cube into 5x 5 x 1 hexahedral elements, with € =8 x 375398 J and
—Z=8x3652407J, (b) 20 x20x | discretization with & =8 x 372761 .
and —Z=8x371883J.

the cube, with the homogenecus boundary condition
B.-n=0.

{n Fig. 3 we show the B— H and J— E plots relative to
the numerical solution of the linear eddy current problem in
which a step of J, =10 MA/m?, parallel to a side of the
cube, 1s applied. The resistivity is 1/6=1uf2m and the
homogeneous boundary condition Exn=10 is applied.
Table I reports the values of Z and @ for several vatues of p.

These results show how the local and global constitutive
errors are reduced by a mesh refinement and are in a good
agreement with the analytical solutions. One may wonder
why in Fig. 2 and 3 the points are distributed both above
and under the curves representing the constitutive equa-

TABLE 1

Values in MJ (Referred to the Whole Domain) of ©, =, and A
Given by the Numerical Results Hlustrated in Fig. 3

SxSx%l 20201
P -pz e pa -’z e A
102 192 224 0.32 1.96 237 04l
10—t 2299 2345 046 23.33 2145 012
1 216.70 221.11 441 219.69 22016 047
10 1458.00 148324 2524 147133 147481 348
107 4987.17  4994.00 683 498734 499382 648
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FIG. 3. B— H and J— E plots (pairs at the Gauss points) relative to the numerical sclutions of a linear eddy current problem in a cube (u=u,)

at vanous times: (a) 5 x 5 x | discretization; (b) 20 x 20 x 1 discretization.

tions. This can be explained by noting that if all the points
were, for instance, under the B — H curve, then it would be
possible to reduce the constitutive error by multiplying A
everywhere by a constant factor slightly larger than unity
(this would be possible since in both examples A xn=0o0n
the boundary).

Furthermore, in the linear probiem of Fig. 3, along
certain lines (normal to the faces) B is piecewise constant,
whereas p,H is piecewise linear with interelement con-
tinuity. It is apparent that the constitutive error is not
minimized if the two curves do not intersect each other.

We have also analysed the TEAM Workshop problem 10
[257 which concerns the calculation of the electromagnetic
ficld produced by a coil of rectangular cross-section in the
presence of a magnetic circuit made up of thin iron plates
and small air gaps. Here we report some results concerning
the magnetostatic field configuration achieved when all the
transients have estinguished.

Figure 4 shows the magnetic field in the iron plates,

8 .&?'@VA\\

TAVAVAVAN
AVAVAWL N 4
v‘uv&w’f- A
G _‘."’\\\"'\\\\
A\.\\\\ A‘Y
A/ AV

FIG. 4. TEAM Workshop problem 10: magnetic field in the iron after
termination of transients.
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FIG. 5. TEAM Workshop problem 10: B — H plots (pairs at the ele-
ment centroids) related to the iron (a}) and air (b} region after termination
of transients.

whereas Fig. 5 shows the B-H plots. In this case, the values
of the two functionals are == 256 mJ, ® =31.4 mJ. The
comparison [26] with the experimental results [25], in
terms of averape flux densities at three specified cross
sections, shows that the numerical error is mainly due to the
bad behavior of the T, €2 solution (the mesh is rather coarse
and there is a single layer of elements in the air gap). In fact,
despite the poor results given by the T, & solution (the
relative errors on the three flux densities are 3.0, 10.8, and
6.8 %), the A, ¢ solution is in excellent agreement with the
measured values {with relative errors of 0.5, 0.3, and 0.9 %,
respectively).

CONCLUSIONS

In this paper, some aspects of the numerical computation
of static and low frequency electromagnetic fields have been
reviewed. In particular, the formulations discussed here are
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based on the use of edge elements. These elements allow for
the efficient introduction of a gauge directly applied on the
shape functions, minimizing the number of unknowns in
terms of vector potentials. The features of these elements are
related to the possibility of representing vector fields whose
tangential components are constrained to be everywhere
continuous, while allowing for possible discontinuities of
the normal component across adjacent elements. These
advantages are in part counterbalanced by the impossibility
of representing a field whose curl is uniform: in a distorted
hexahedral edge element. In fact, in this case, the flux
(fVxA-ndS or [VxT-ndS) is kept uniform in the
master clement, so that the curl in the distorted element
{whose opposite faces are not parallel) varies according to
the inverse of the Jacobian.

Another important point is related to the discussion of
the properties of the dual electric (A, ¢} and magnetic (T, 2)
formulations. Following the theory described in [1], in the
magnetostatic case, the constitutive error-based approach
leads te upper and lower bounds for energy related
functionals.

In the frequency domain some authors [3-57, adopting a
different approach, seem to arrive at the definition of upper
and lower bounds for the approximate solutions obtained
using numerical procedures. However, the error-based
approach does not yield analogous general results when
appled to transient or steady state electomagnetic field
problems [2]. Here we have shown that the particular
determination of the Laplace transform on the real axis is
able to produce real bounding functionals.

It is possible to envisage dual problemss in which ¢ and
u play dual roles. In such cases electric and magnetic
formulations provide exactly the same numerical results for
dual quantities. So, neither formulation is definitely better
than the other one, and the choice of the method might be
made according to the particular problem and objectives
{¢.g., connectivity of the conducting region, precision, or
solenoidality of the approximate field solutions).

However, our point of view is that both computations
should be performed whenever possible. In fact, the final
point highlighted in this paper is the definition of the local
constitutive error, which represents one of the most reliable
ways of establishing: (i) how good is the numerical solution;
{ii) a valuable criterium for mesh refinement; (iii) a powerful
means for the identification of input data errors (especially
when numerical procedures are employed by nonexpert
users). Work is now in progress to extend the error-based
edge element formulations to nonlinear cases [27] and
wave propagation [28].

APPENDIX

In this appendix, the basic features of the methods
illustrated in the paper will be highlighted with reference to
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the simple electric network shown in Fig. Al. In the com-
putational method for the eddy current problem described
in the paper, the primitive variables are the potentials
instead of the fields in order to automatically verify Maxwell
equations. Similarly, for the network analysis we will
assume adequate unknowns to automatically verify
Kirchhoff laws, namely loop currents and time integrals of
the node potentials (node fluxes). Thus, grounding node B
and selecting the loop currents shown in Fig. Al, the
independent variables become (1) and i{z).

The solution of the problem will then be provided by the
functions @(¢) and i(¢) which verify constitutive equations
and the initial condition:

g =L{i+1) (AD)
i=G dp/dr (A2)
p(0)=g,. (A3}

These equations are in close relationship with (6), (7),
(26}, (27). Thus, similar to the field treatment, we can define

Ao, i)=[o~ Lii+i,)]2L (A4)
Aolo, i)=[i—G dp/d1])*)2G {AS5)
and
A, 1, py=[¢ ~L(I+1) 2L (A6)
Agld, 1, p)=[i— G(pp — 90)1*/2G, (AT)
where 4( p) denotes Laplace transform of a(?).
The sum A = A5+ A, can also be expressed as
A=54+6, (AR)
1e Pa=0Q j
T -
ic iL
ve | G Lo ja=ie
<
—l—- =0
_) ic=-1
=i+ie
vo =vi=d/ds
FI1G. Al. Electric network used in the circuit analegy: L=1H,

G=102""i,=14,9,=0.
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where

G
2 (p— o) — @i, (A9)

i _ %o

f Al0

WG p - (A10)

The stationary points of = and @ (as well as their
minimization for real positive values of p) are given by:

%+G(P¢—(Po)—f(a=0 (A11)
P i Do

Li+i)+-=~==0 (A12)
) pG p

which are the Kirchhoff laws written in the Laplace domain.

Fig. A2 shows the plot of p>Z, p?@, and p?A obtained
solving Eqgs. (All) and (A12) in the time domain by
Crank-Nicholson scheme. It can be noted that the error
peak is localized around p = 1/4t, where Az 1s the time step
of Crank—Nicholson integration.

functionals [J} versus p [Hz]: At=1s
10° - , e 1
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FIG. A2. Plots of p*Z, p?@ and p*A associated with the solutions of

Egs. (Al11) and {A12) obtained in the time domain by Cranck-Nicholson
scheme using various time steps.
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